

Keynote 2: Universities as Catalysts for Change: How AI amplifies **Education for** Sustainable Development (ESD)

Dr Tianchong Wang

Lecturer in STEM in Innovative Education Futures

College of Education, Psychology and Social Work

Flinders University

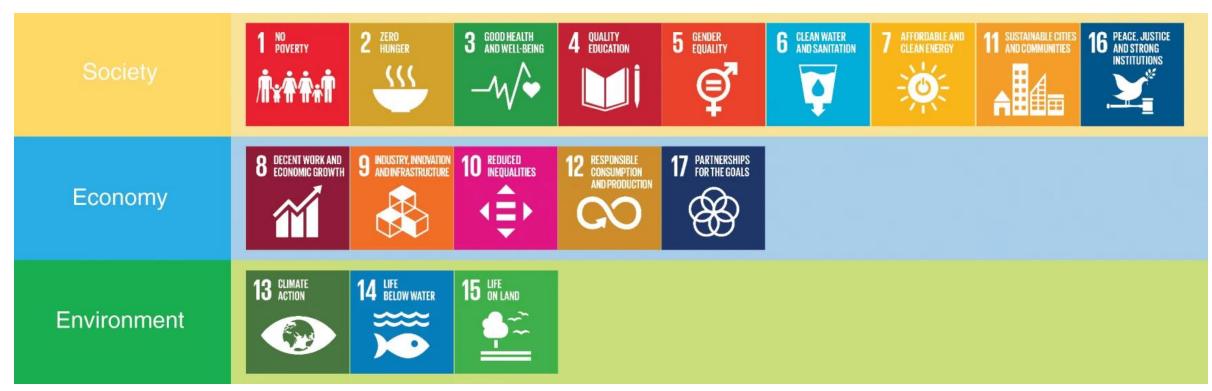
Agenda

- The Changing Landscape of Sustainability and Higher Education
- Transforming Sustainability Education, Research and Operation with AI
- Towards Ethical and Responsible Adoption of AI for ESD in Higher Education

A Planet in Urgency

- **Urgent action** is needed to address the dramatic interrelated challenges the world is facing:
- The climate crisis, mass loss of biodiversity, pollution, pandemic diseases, extreme poverty and inequalities, violent conflicts, and other environmental, social and economic crises endanger life on our planet.

We are in a battle for our lives. But it is a battle we can win.


UN Secretary-General, Antonio Guterres

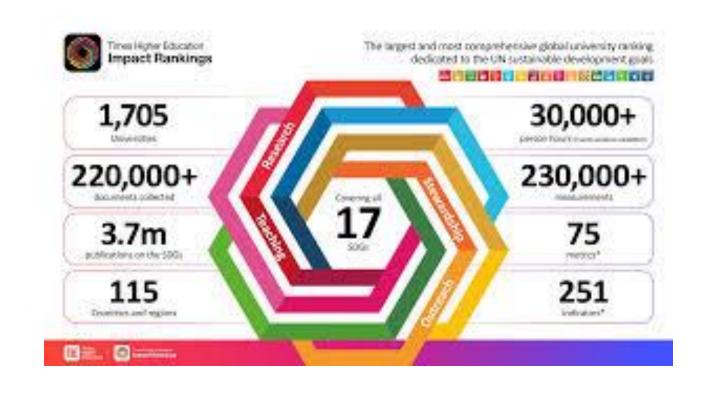
17 Goals to Transform Our World

https://www.un.org/sustainabledevelopment/sustainable-development-goals/

The Need for a Sustainable Future

• Education for Sustainable
Development (ESD), anchored in
SDG 4.7 and as an enabler for all 17
SDGs, is the foundation for the
required transformation, providing
everyone with the knowledge, skills,
values and attitudes to become
change agents for sustainable
development.

By 2030 ensure all learners acquire knowledge and skills needed to promote sustainable development, including among others through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship, and appreciation of cultural diversity and of culture's contribution to sustainable development.


The Promise and Paradox of ESD

 ESD enables learners to develop their cognitive and non-cognitive skills, such as critical thinking and competences for collaboration, problem solving, coping with complexity and risk, building resilience, thinking systemically and creatively, and empowering them to take responsible action as global citizens

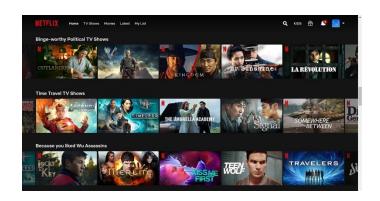
Current Limitations of ESD in Higher Education

- Fragmented ESD in Curricula
- Low engagement
- Imbalance between global perspective and local relevance
- ESD demands learners who can imagine alternatives and act collectively. But often, we teach sustainability as content — not as lived, participatory transformation."

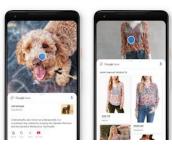
The Ubiquitousness across Sectors

Artificial Intelligence (AI) is NOT a new concept

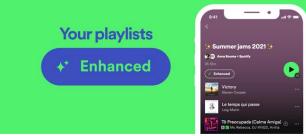
- Conceptualised in the 1950s
- As an umbrella term and evolving concept, can be understood as a technology genre, with:

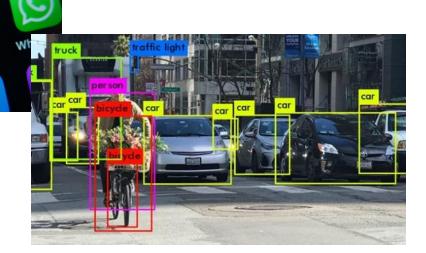

The capacity of computers or systems to exhibit or simulate intelligent behaviours.

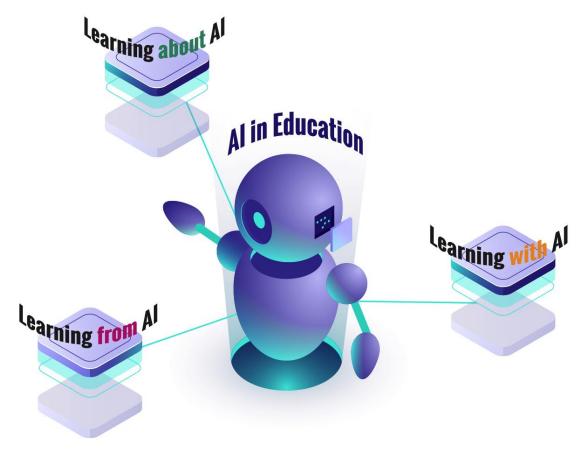
John McCarthy, Dartmouth Conference, 1956



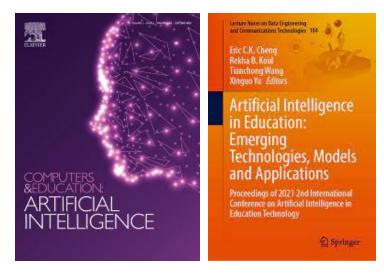
Al is something you've likely been using in daily life.







Al is a Disruptive



Towards a Holistic Approach to Al in Education

(Wang & Cheng, 2021; 2022)

Wang, T., & Cheng, E. C. K. (2021). An investigation of barriers to Hong Kong K-12 schools incorporating Artificial Intelligence in education. *Computers and Education: Artificial Intelligence (2)*.

Wang, T., & Cheng, E. C. K. (2022). Towards A Tripartite Research Agenda: A Scoping Review of Artificial Intelligence in Education Research. In E. C. K. Cheng, R. B. Koul, T. Wang, & X. Yu (Eds.), Artificial Intelligence in Education: Emerging Technologies, Models and Applications. Singapore: SpringerNature.

Three Paradigms of AI in Education

- Learning from AI: AI serves as a source of knowledge and the means by which students learn
- Learning about AI: Equipping learners AIrelated knowledge, skills and values so that they can thrive in an AI-saturated future
- Learning with AI: Using AI tools to improve learning and teaching practices

Why AI Matters for ESD

- A Transformative Force
- Al enables adaptive, data-informed, contextualised learning.
- Supports interdisciplinary and systems-thinking competencies.
- Empowers universities to model sustainability through smart operations.

nature communications

Explore content > About the journal > Publish with us >

nature > nature communications > perspectives > article

Perspective Open access Published: 13 January 2020

The role of artificial intelligence in achieving the Sustainable Development Goals

Ricardo Vinuesa 🗹, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Virginia Dignum, Sami Domisch,

Anna Felländer, Simone Daniela Langhans, Max Tegmark & Francesco Fuso Nerini

Nature Communications 11, Article number: 233 (2020) | Cite this article

564k Accesses | 2226 Citations | 942 Altmetric | Metrics

13 809 17 (15%) 17 (5%)

b

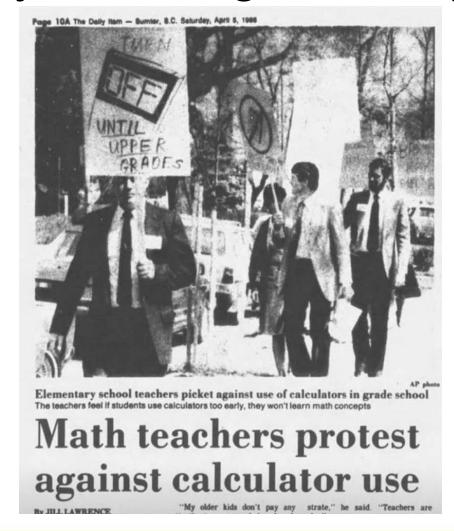
Negative impacts of AI: 35% (23%)

Positive impacts of AI: 79% (71%)

Vinuesa, R., Azizpour, H., Leite, I. *et al.* The role of artificial intelligence in achieving the Sustainable Development Goals. *Nat Commun* **11**, 233 (2020).

https://doi.org/10.1038/s41467-019-14108-y

Documented evidence of the potential of AI acting as (a) an enabler or (b) an inhibitor on each of the SDGs.



Academic Integrity (cheating, plagiarism) Concerns

If history has taught us anything...

"Teachers feel if students use calculators too early, they won't learn math concepts".

- 1988

The Plagiarism Plague

In the internet era, cheating has become an epidemic on college campuses

By Don Campbell

ATLANTA

HE PROBLEM OF CHEATING in academia hit Tom Lancaster in a very personal way more than a decade ago: The Emory University political science professor found his own research being plagiarized by one of his students.

Lancaster, now senior associate dean for undergraduate studies, had learned while researching elections in Greece that women and men use different polling booths and that their votes are recorded by gender.

He subsequently had his students enter the polling data from each precinct and do papers comparing gender voting patterns in different sections of Greece. Two years later, in a similar class on southern European politics, a student wrote a paper about gender differences in voting in Greece—even though that topic was not assigned—using data that could only have been obtained from students in the previous class.

"The student," said Lancaster, "had clearly in my mind simply plagiarized a previous paper—not necessarily the words—but had simply pulled out the data." Lancaster took the case to the

Students can use computers, cellphones, and other high-tech gadgets to cheat and plagiarize their way to better grades.

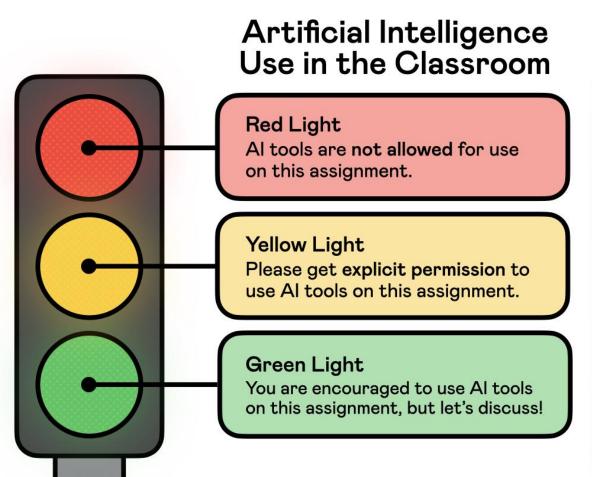
Emory honor council, but the council judged the student not guilty because the data had not been published. The student admitted finding it in a fraternity file.

To add insult to injury, after Lancaster gave the student an F in the course, he found out a year later that the grade was

"Internet plagiarism is probably by far the most common form of cheating or academic dishonesty," says Didi Kuo, a 2005 Emory University graduate who chaired the university's honor council.

changed without his being notified.

"It really was the shot across the bow for me," said Lancaster, who has been a crusader for a more stringent honor code and judicial process at Emory ever since.


Today, in the era of the internet and other high-tech gadgetry, Lancaster's story continued on page 15

	Short-term	Medium-term	Long-term	
1. Ignore	Might get away with it momentarily			
2. Ban	Problematic	Becomes risky		
3. Invigilate	Where appropriate	Where appropriate	Where appropriate	
4. Embrace	Being mindful of equity issues	Where appropriate		
5. Design around	Risky			
6. Rethink	Requires time and effort			

The "Traffic Light" System

Can I Use AI on this Assignment? Generative AI Acceptable Use Scale

Generative AI refers to any of the thousands of Artificial Intelligence tools in which the model generates new content (text, images, audio, video, code,etc)

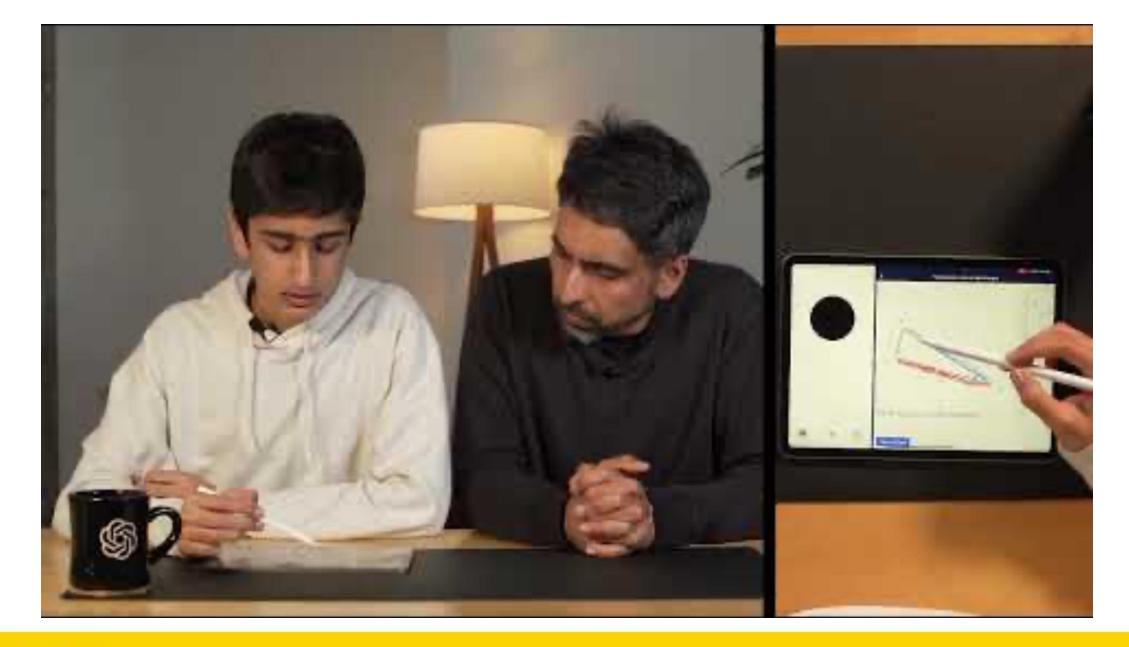
This includes, but is not limited to, Large Language Models! LLMs such as ChatGPT, Google Gemini,etc, Image creators such as Dall-E3, Adobe Firefly, and any tools with built

in generative AI capabilities such as Microsoft CoPilot, Google Duet, Canva, etc etc)

	Level of Al Use	Full Description	Disclosure Requirements		
0	NO AI Use	This assessment is completed entirely without Al assistance. Al Must not be used at any point during the assessment. This level ensured that student rely solely on their own knowledge, understanding, and skills.	No Al disclosure required May require an academic honesty pledge that Al was not used.		
1	Al-Assisted Idea Generation and Structuring	No Al content is allowed in the final submission. Al can be used in the assessment for brainstorming, creating structures, and generating ideas for improving work.	Al disclosure statement must be included disclosing how Al was used. Link(s) to Al chat(s) must be submitted with final submission.		
2	Al-Assisted Editing	No new content can be created using Al. Al can be used to make improvements to the clarity or quality of student created work to improve the final output.	Al disclosure statement must be included disclosing how Al was used. Link(s) to Al chat(s) must be submitted with final submission.		
3	Al for Specified Task Completion	Al is used to complete certain elements of the task, as specified by the teacher. This level requires critical engagement with Al generated content and evaluating its output. You are responsible for providing human oversight and evaluation of all Al generated content.	All Al created content must be cited using proper MLA citation. Link(s) to Al chat(s) must be submitted with final submission.		
4	Full Al Use with Human Oversight	You may use Al throughout your assessment to support your own work in any way you deem necessary. Al should be a 'co-pilot' to enhance human creativity. You are responsible for providing human oversight and evaluation of all Al generated content.	You must cite the use of Al using proper MLA or APA citation. Link(s) to Al chat(s) must be submitted with final submission.		

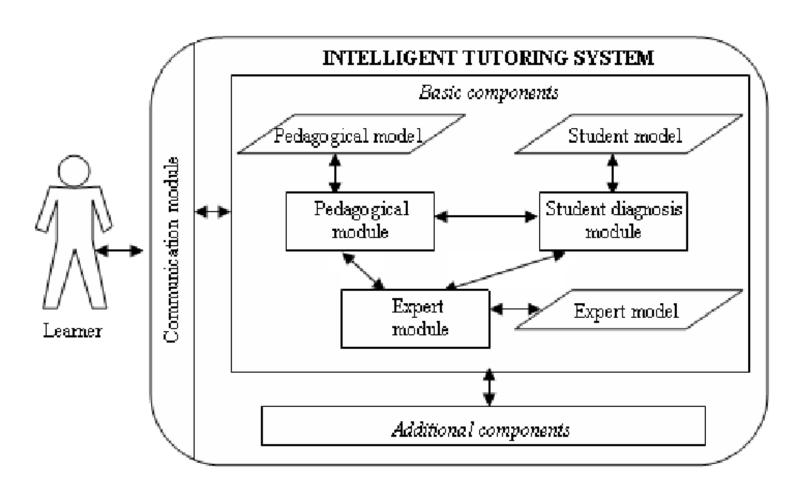
Adapted by Vera Cubero for the North Carolina Department of Public Instruction (NCDPI) from the work of Dr. Leon Furze, Dr. Mike Perkins, Dr. Jasper Roe FHEA, & Dr. Jason Mcvaugh Links to Original Work

Creative Commons Licensed BY (attribution) NC (Non Commercial) SA (Share Alike)
To mix this for your use case, you may make an editable copy, using this TEMPLATE LINK.
Please maintain CC licensing and all attributions in all duplications, references, or remixing.


From One-Size-Fits-All to Responsive Learning ecosystems

 Al-driven adaptive learning tailors content to learner profiles:

Prior knowledge, discipline, regional context.


- Al diagnoses misconceptions, scaffold inquiry, personalise feedback.
- Enables development of core ESD competencies: systems thinking, anticipatory reasoning, ethical action.
- Creates relevance and engagement across cultural and socio-economic contexts.

Intelligent Tutoring Systems

ChatNetZero is the world's first climate target chatbot. The tool uses specially trained LLMs on a live database tracking thousands of public decarbonization targets to demystify climate commitments.

3.08 PM, 18 Sep

What is the net-zero target of Walt Disney Co, and do they report scope 3 emissions?

ChatNetZero provides domain specific details rather than generic answers

ChatNetZero

3.08 PM, 18 Sep

Walt Disney Co has committed to achieve net zero emissions for their direct operations, which includes scope 1 and scope 2 emissions, by 2030... They do not have a target that covers scope 3 emissions. (source)

GPT-4

3.08 PM, 18 Sep

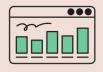
The Walt Disney Company had made commitments to address climate change... Scope 3 emissions, which include all indirect emissions not covered by Scope 1 and Scope 2, are increasingly being reported by companies committed to full transparency in their sustainability efforts...

How AI chatbots drive eco-friendly practices

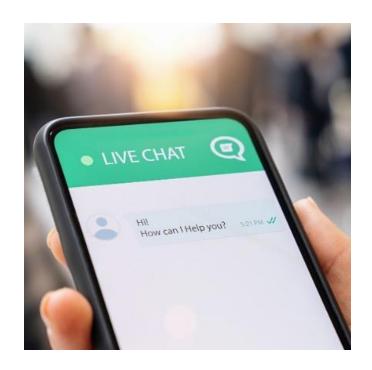
Raising environmental awareness

Practical ecofriendly tips

Personalization


Real-time user updates

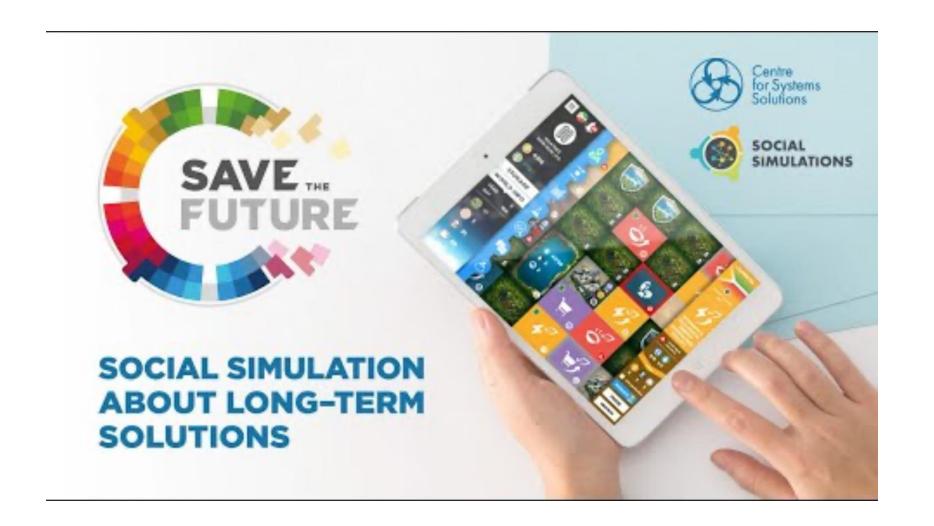
Community building

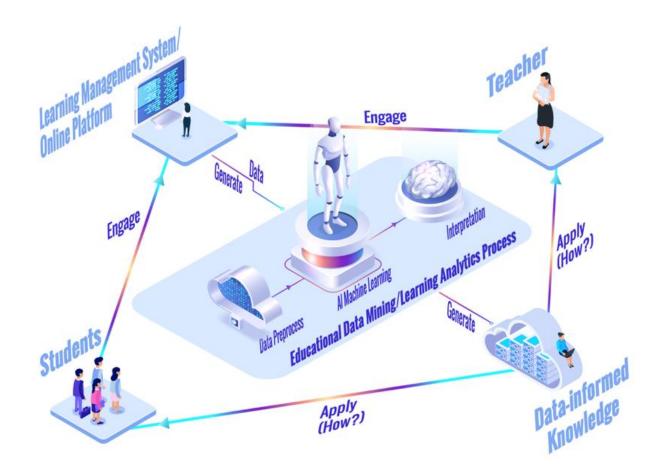

Integration into daily life

Actionable data-driven insights

Instant access to educational resources

Al-powered virtual labs simulate ecological and social systems


- Dynamic simulations model real-world complexity (e.g., climate, economy, society).
- Learners witness cascading effects of decisions — fostering systems thinking and socio-emotional learning.
- Enables safe exploration of policy trade-offs (e.g., water vs energy vs food)
- Cultivates systems thinking and ethical reasoning
- When learners see and feel the ripple effects of their decisions, sustainability shifts from abstraction to agency.



These immersive systems cultivate *agency*. Students learn not through lectures, but by navigating uncertainty — as real sustainability leaders do.

Accelerating Sustainability Research: Al as a Research Partner

- Climate Modelling (SDG 13): Hyper-local predictions for adaptive policy.
- Biodiversity (SDGs 14–15): Al classifies species, integrates indigenous knowledge.
- Agriculture & Food Security (SDGs 2 & 12): Synthesises climate, soil, and cultural data.
- Urban Sustainability (SDG 11): Al visualises policy trade-offs across sectors.
- Global Collaboration (SDG 17): NLP breaks language barriers; citizen science platforms democratise research.

nature sustainability

Explore content > About the journal > Publish with us >

nature > nature sustainability > analyses > article

Analysis Open access Published: 21 July 2025

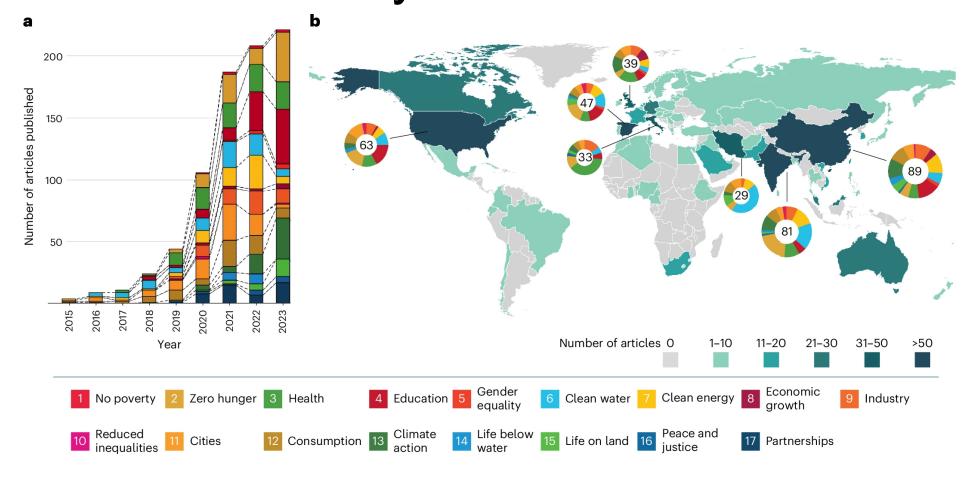
Artificial intelligence in sustainable development research

C. Gohr ☑, G. Rodríguez ☑, S. Belomestnykh, D. Berg-Moelleken, N. Chauhan, J.-O. Engler, L. V.

Heydebreck, M. J. Hintz, M. Kretschmer, C. Krügermeier, J. Meinberg, A.-L. Rau, C. Schwenck, I.

Aoulkadi, S. Poll, E. Frank, F. Creutzig, O. Lemke, M. Maushart, J. Pfendtner-Heise, J. Rathgens & H. von

Wehrden


Nature Sustainability 8, 970-978 (2025) Cite this article

21k Accesses 4 Citations 29 Altmetric Metrics

Gohr, C., Rodríguez, G., Belomestnykh, S. *et al.* Artificial intelligence in sustainable development research. *Nat Sustain* **8**, 970–978 (2025). https://doi.org/10.1038/s41893-025-01598-6

Global distribution and publication years of the 792 scientific articles analysed

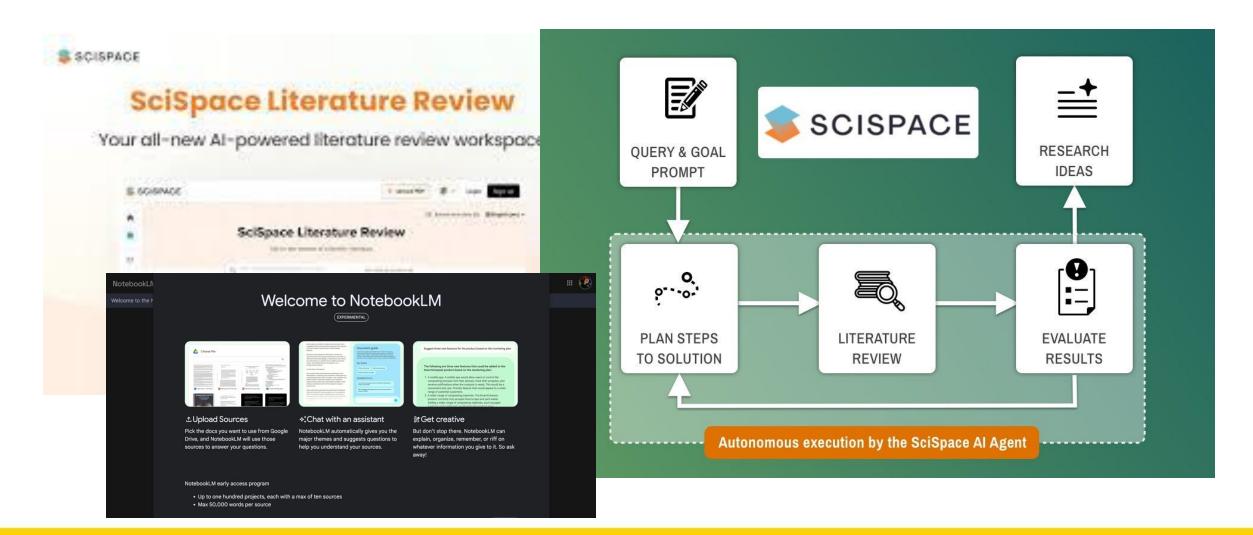
	Vegetation	Water	Forecasting	Remote sensing	Clean energy	Health care	Education	Industry	Total
Forecasting	15	32	28	4	8	2	2		91
System optimization	10	6	9	13	23	5	5	5	76
Data mining and remote sensing	14	2	4	11		9	6	1	47
Fast approximate simulation	8	11	5	10	2	4		1	41
Predictive maintenance	7		3	5	5		2	2	24
Accelerated experimentation	1	2	3	2	3	1			12
Total	55	53	52	45	41	21	15	9	291

Heatmap illustrating the frequency of use of AI roles in different word analysis groups

Roles of Al

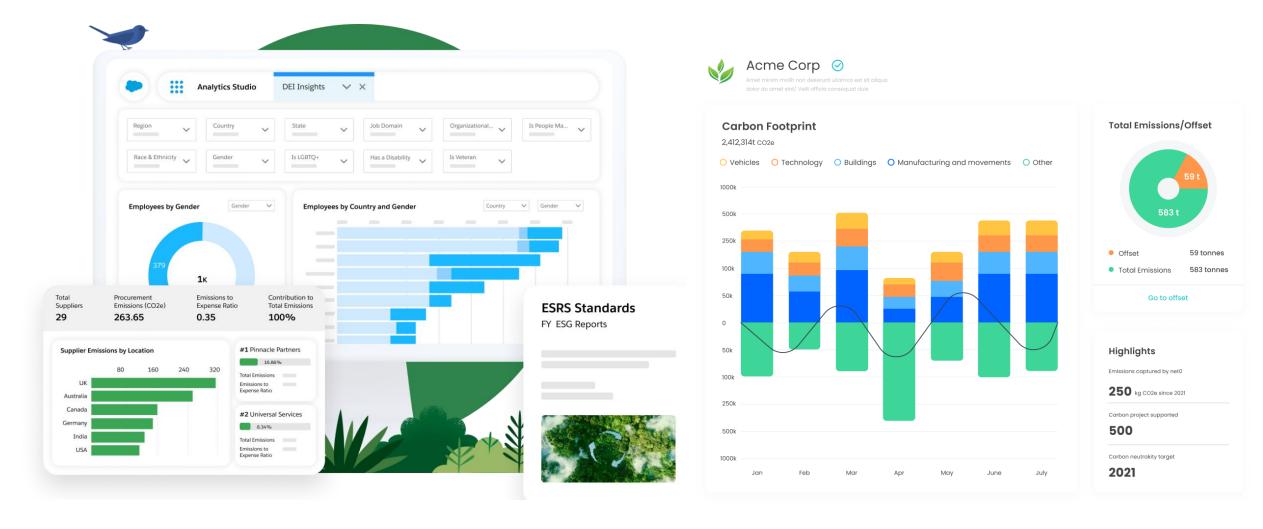
Forecasting: particularly prominent within clean energy and vegetation, where predictive insights support resource management and environmental monitoring

System optimization: widespread in clean energy, reflecting a focus on improving operational efficiency and performance



Data mining and remote sensing: notable for extracting actionable insights from unstructured data, especially in the health-care and remotesensing groups, underscoring the growing need for data-driven decision-making

Accelerated experimentation and fast approximate simulation: specialized tools in clean energy and health care that facilitate research and preliminary analysis

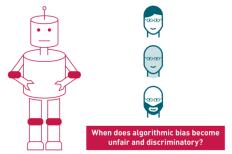


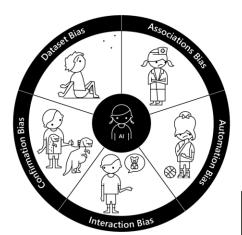
Smarter University Operations: The Campus as a Living Laboratory

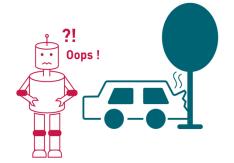
- Al monitors sustainability metrics in real time:
- Energy, water, waste, carbon footprint.
- Interactive dashboards turn data into learning opportunities.
- Al enhances procurement ethics and lifecycle analyses.
- NLP tools verify vendor sustainability claims.

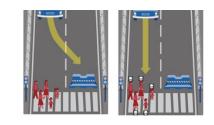
When students can *see* the sustainability performance of their campus, education becomes experiential and accountability becomes cultural.

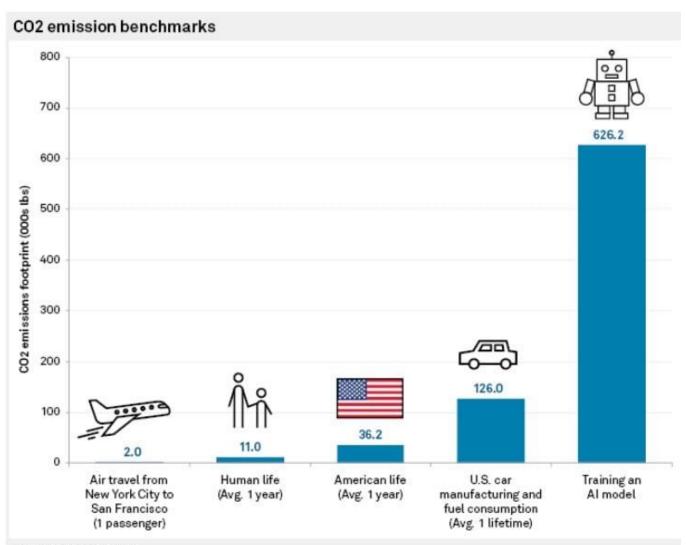
 https://play.vidyard.com/rCeF4nupHBnpU5BEq Xfu7D?disable_popouts=1&type=inline&hidden _controls=0&hide_playlist=0&hide_html5_playlist=0&viral_sharing=0&name_overlay=0&autoplay=0&preload=metadata&v=4.3.15


Reimagining the University's Role


- Universities adopting AI amplifies impact across teaching, research, and engagement.
- Universities model sustainability through operations and ethics.
- Institutions become agents of transformation not just education providers.
- The AI–ESD nexus invites us to reimagine the university itself — as a living ecosystem of sustainable innovation.


Smart Tech Requires Responsible Stewardship


- Deepfake: A fake video/image that looks real but has been digitally altered to mislead viewers.
- Misinformation/Disinformation: All can sometimes generate convincing but untrue information or media, which can lead to the spread of misinformation or disinformation.
- Hallucinations: A "hallucination" happens when the A
 makes something up that isn't true but presents it as
 fact. Some mistakes might be minor, but others can
 have greater consequences.
- Bias: A GenAl tool uses the information and data it's trained on, which often includes patterns that favour certain groups or viewpoints. This can lead to results that reinforce harmful stereotypes, exclude certain groups, and produce non-inclusive language and images, resulting in discriminatory content.



An "American life" has a larger carbon footprint than a "Human life" because the U.S. is widely regarded as one of the top carbon dioxide emitters in the world.

Source: College of Information and Computer Sciences at University of Massachusetts Amherst

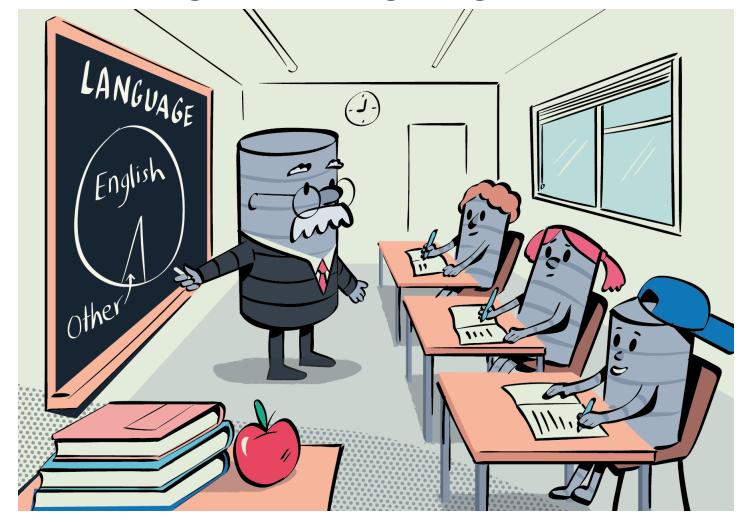
https://www.youtube.com/watch?v=b0C56yqlkb
 k

Towards Ethical and Equitable Al Adoption with Small Language Models (SLMs)

- On-premises / self-hosted AI models (e.g., DeepSeek, Llama) →
- ✓ Reduce carbon footprint
- ✓ Enhance data sovereignty
- √ Allow contextual customisation for ESD goals

 Universities can lead by example — using smaller, locally hosted AI models that are greener, transparent, and globally shareable.

5 Leading Small Language Models of 2024


Be Careful with the New Digital Divide

 The use of AI systems is not distributed uniformly across different countries, or even within regions in the same country.

 The varying levels of access and use of these technologies can reinforce and amplify already existing digital divides and data inequities.

Domination of English language data

 Concerted efforts are needed from all stakeholders (Government, Universities, Schools and Families)

UNESCO AI Competency Framework

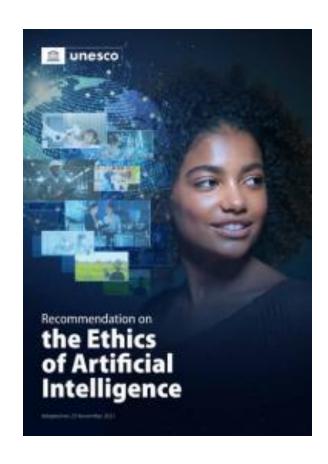
Aspects		Progression		
		Acquire	Deepen	Create
1.	Human-centred Mindset	Human agency	Human accountability	Al social responsibility
2.	Ethics of Al	Ethical principles	Safe and responsible use	Co-creating AI ethical rules
3.	Al Foundations and Applications	Basic AI techniques and applications	Application skills	Creating with AI
4.	Al Pedagogy	Al-assisted teaching	Al-pedagogy integration	Al-enhanced pedagogical transformation
5.	Al for Professional Development	Al enabling lifelong professional learning	Al to enhance organizational learning	Al to support professional transformation

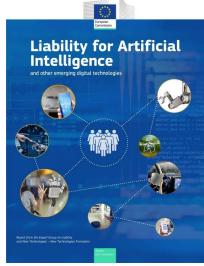
Table 1. Al competency framework for students

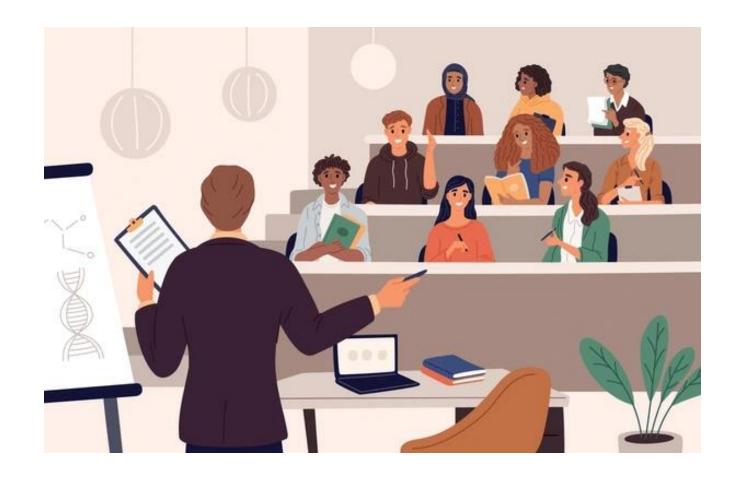
Competency aspects	Progression levels		
	Understand	Apply	Create
Human-centred mindset	Human agency	Human accountability	Citizenship in the era of AI
• Ethics of Al	Embodied ethics	Safe and responsible use	Ethics by design
Al techniques and applications	Al foundations	Application skills	Creating AI tools
Al system design	Problem scoping	Architecture design	Iteration and feedback loops

Introductive

- A THE DO SHARE STREET, BY A PROPERTY OF STREET, BY A SHARE STREET, STR
- We get as all departs as another solving man be another and, agreement as and departs another regard?
- Make Alderger, by the facility country have been programmed in a shorter great the angles of their country.
- The entire property has been been come to be a reprinciple of the property to also experience of any other property.

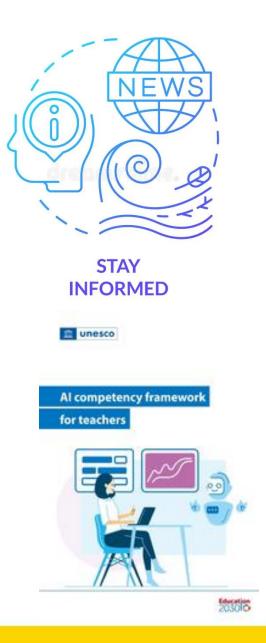






The Need for Clearer AI Policy at University Level

Teaching staffs have a key scaffolding role for students' effective, responsible use of AI for learning



Stay Informed!

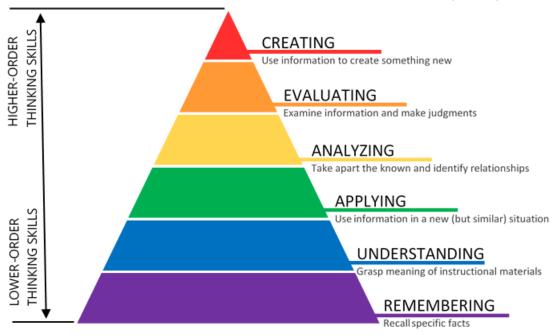
 By exploring and piloting various AI tools within and beyond classrooms, we will gain a firsthand understanding of their capabilities and limitations for ESD.

- Community of Practices
- Teacher AI Competency Upskilling

Encourage Critical Thinking

 Explain the importance of checking the credibility of a source before trusting the information

 Encourage the students to question AIgenerated information and always ask, "Why?"


 If we want our students to be creative, critical thinkers, and problem solvers, it is crucial that education is delivered in ways that promote higher order thinking.

 Students need to experience the "aha!" moment – the moment of insight

BLOOM'S TAXONOMY – COGNITIVE DOMAIN (2001)

Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into practice, 41(4), 212-218.

Build competency-based, authentic assessments for ESD

- Iterative Projects
- Reflective Writing and Portfolios
- Oral Evaluations, Debates, and Interviews
- Process-Oriented Assessments
- Digital artefacts
- Adaptive Testing

.

FORMATIVE

Open Dialogue

 Discuss Al's potential and limitations with colleagues and students, addressing both its benefits and risks.

 Share how they they might cautiously and responsibly use AI to be creative or get inspired.

Any Questions?

CONNECT

- flindersuniversity
- @flinders
- @ @flindersuniversity
- m school/flinders-university/
- @flindersuniversity

Dr Tianchong Wang

Lecturer in STEM in Innovative Education Futures

College of Education, Psychology and Social Work

Flinders University

Email: tianchong.wang@flinders.edu.au

