Integrating AI knowledge and skills in the curricula to prepare students for the workplace

Ioannis N. Athanasiadis Chair of Artificial Intelligence, WUR

www.wur.ai



Few words about me

https://www.wur.ai

IOANNIS N.ATHANASIADIS HOME LECTURE ABOUT TEAM TEACHING PROJECTS PUBLICATIONS CONTACT

Thessaloniki port. CC BY I. Athanasiadis via Flickr

loannis Athanasiadis

Professor of Artificial Intelligence Wageningen University & Research

- Email
- **m** University Page
- **y** Twitter
- in LinkedIn
- Google Scholar
- ORCID

Agenda

News!

Welcome!

I am involved in (the organization of) the following events:

I am a Professor of Artificial Intelligence and Data Science at <u>Wageningen University and Research</u>, in the Netherlands. On my website you may find about my research <u>team</u>, <u>grants</u>, <u>teaching</u> and <u>publications</u>. Check also the new

community-driven, open-access journal Socio-

Environmental Systems Modelling!

 Main organizer, <u>AgML 1st Workshop - AgMIP research</u> team on <u>Machine Learning for agricultural modelling</u>, January 22-24, 2024, Wageningen, The Netherlands.

Chairholder

prof.dr. I (Ioannis) Athanasiadis Professor/Chairholder

environmental, social and life sciences.

News

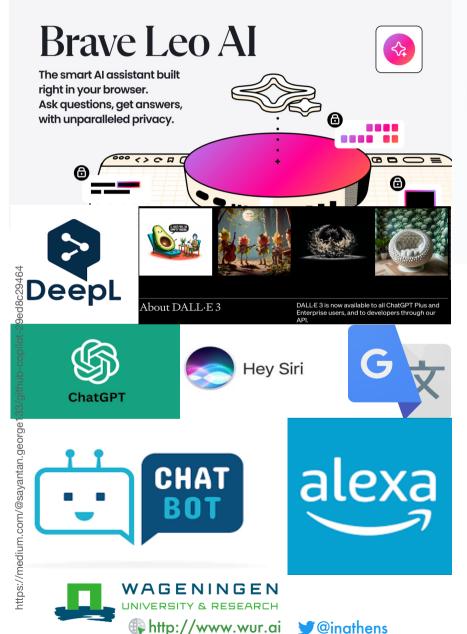
> 04 March 2025
Unlocking the power of AI and data in green life sciences

Research

inspired, applied research in close cooperation with domain experts in the

Our group is involved in several national and international grants, including:

- > LTER-LIFE, A research infrastructure for digital twins of ecosystems in a changing world, (2023-2033), NWO
- AgrifoodTEF, Testing and experimentation facility for artificial intelligence in agriculture and food, (2023-2027). Digital Europe

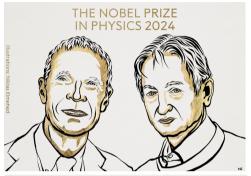

Education

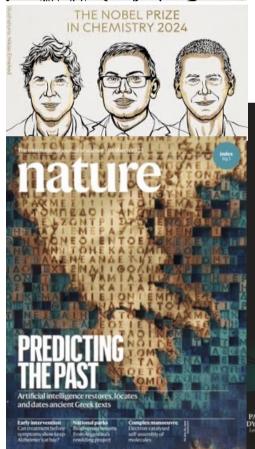
The Artificial Intelligence group contributes to a wide range of courses related to artificial intelligence and its responsible application on BSc, MSc and PhD level.



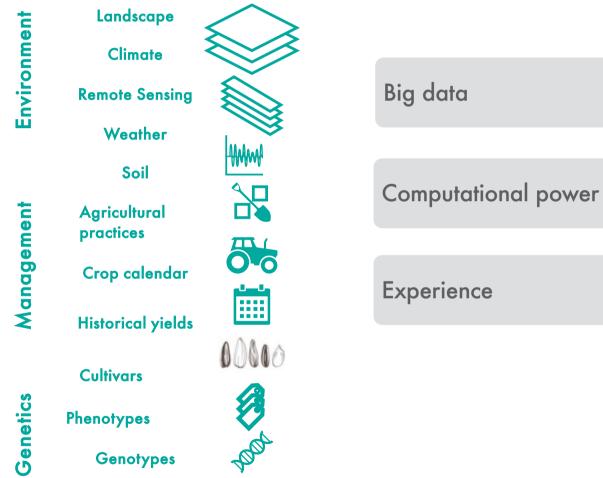
Recent publications

AI is everywhere!





Data driven discoveries



O NATURE COM/NATURE Vol. 542 No. 7679

AI for investigating nature and feeding the world

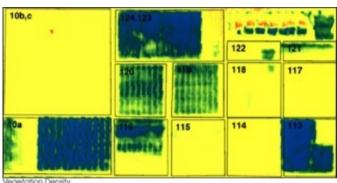
Global challenges

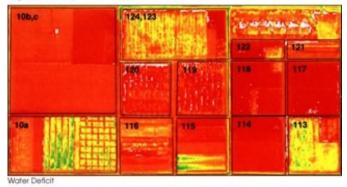
nputational power

Food security

Climate change

Biodiversity


Remote sensing for precision agriculture and livestock farming (2000)


Image-based remote sensing for detecting vegetation density, water deficit and crop stress

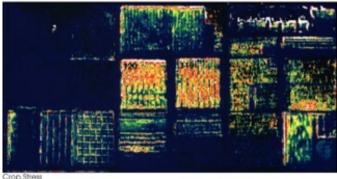
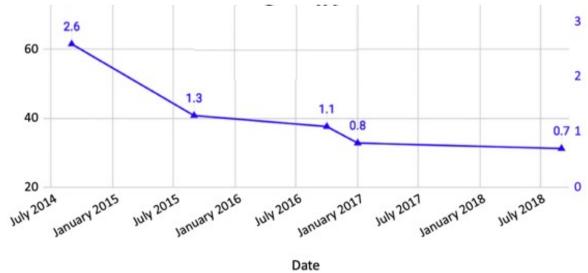
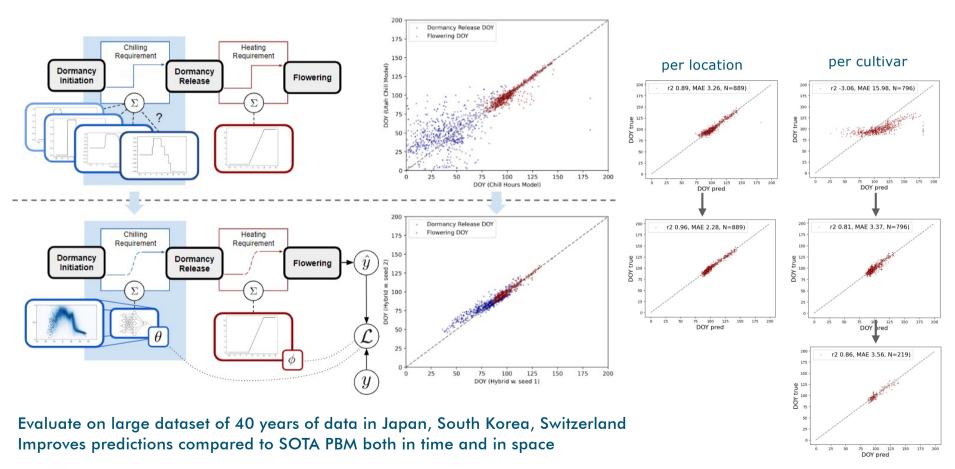


Photo Credits: Uthpal Kumar, PhD candidate, WUR.

Machine vision for plant phenotyping (2014)

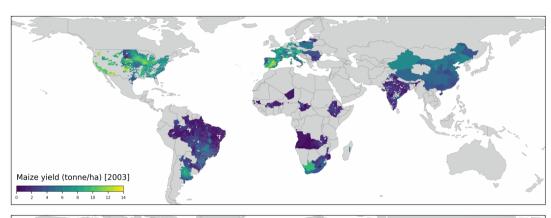
Leaf counting error (lower is better)

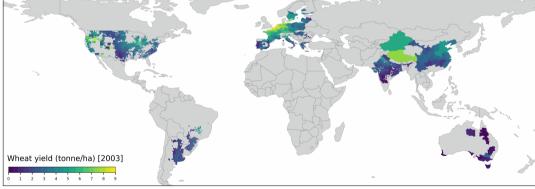



Photo Credit: NPEC, WUR.

Tsaftaris, S. A. & Scharr, H. Sharing the Right Data Right:
A Symbiosis with Machine Learning.
Trends Plant Sci. 24, 99–102 (2019)

Hybrid ML improves phenology estimations

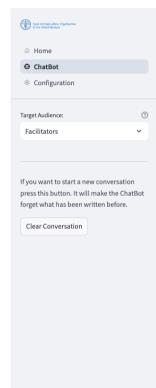

- Hybrid model mixes deep learning and PB components
- End-to-end training with gradient descent of both models

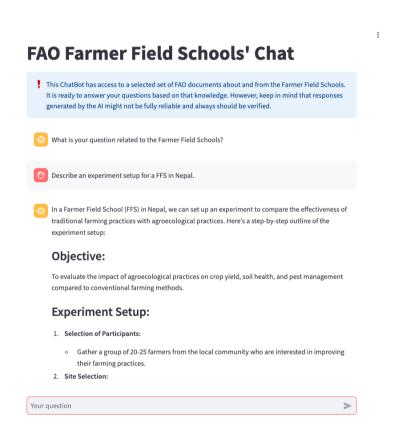


CY-Bench

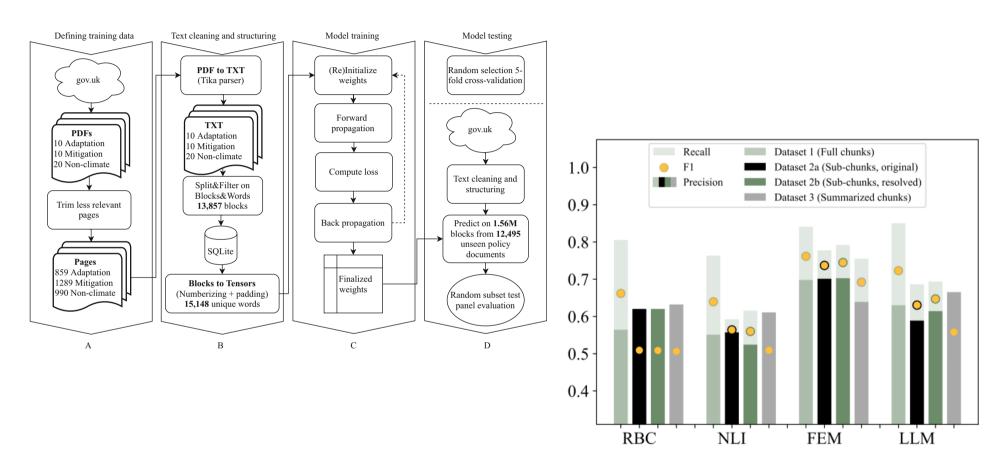
Sub-national crop yield forecasting benchmark

Protocol-based benchmarking
Intercompare ML models and predictor added value
Establish best practices

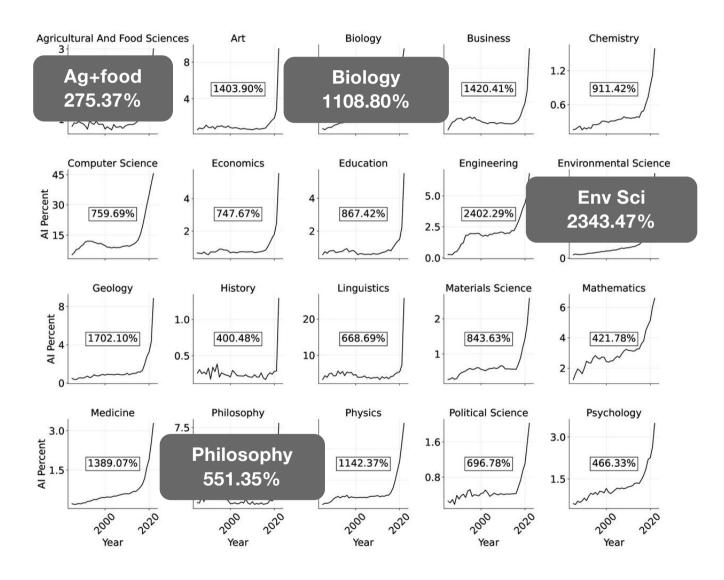

country_name	Wheat				
	Min Max Year	SUBNATIONAL ADMIN REGIONS	LABEL SIZE	LABELS TIMELINE 2003-2024	
Argentina	2003-2024	238	4607		
Austria	2004-2020	9	133		
Australia	2003-2022	17	270		
Belgium	2004-2020	11	174		
Bulgaria	2010-2020	6	45	IIIIII.s	
Brazil	2003-2022	1015	18429		
China	2004-2022	25	475		
Czechia	2004-2020	14)	238		
Germany	2004-2021	358	5888		
Denmark	2006-2020	10	150		
Estonia	2004-2020	5	85		
Greece	2003-2019	40	609		
Spain	2003-2020	43	536		
Finland	2004-2020	18	176		
France	2003-2020	91	1531		
Croatia	2008-2020	2	25		
Hungary	2004-2020	20	278	Hadalan, L. H	
Ireland	2010-2020	3	11	III	
India	2004-2017	474	6261		
Italy	2003-2020	83	1197		
Lithuania	2004-2020	10	169		
Latvia	2004-2018	5	75		
Netherlands	2004-2020	12	195		
Poland	2004-2020	17	284		
Portugal	2004-2020	4	68		
Romania	2004-2020	(34)	379		
Sweden	2004-2020	17	271		
Slovakia	2017-2018	5	10		
	2004-2023	1638	22834		


Farmer school chatbot

Together with FAO and WR we investigate the potential of AI to transform agricultural extension and education: multi-lingual, interactive, trustworthy

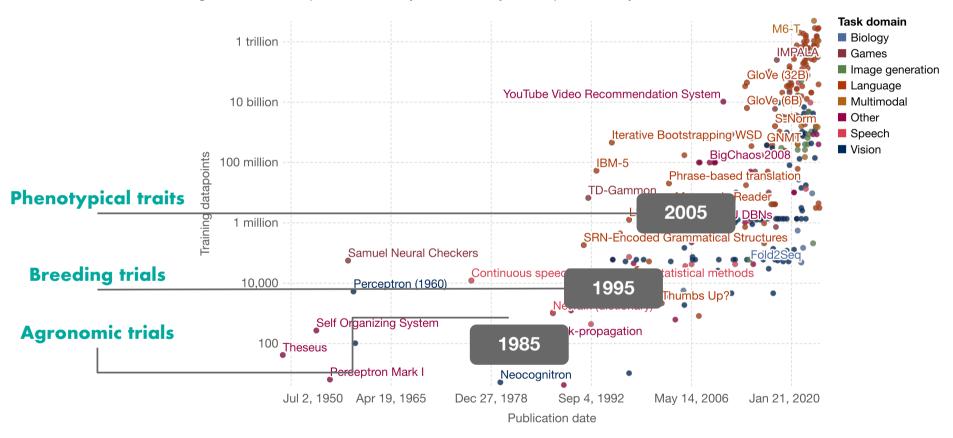


Tracking climate policy adaptation with Language AI


R. Biesbroek, S. Badloe, I. N. Athanasiadis, **Machine learning for research on climate change adaptation policy integration: an exploratory UK case study**, Regional Environmental Change, 20:85, 2020, doi:10.1007/s10113-020-01677-8.

J. Bonenkamp, R. Biesbroek, I. N. Athanasiadis, **Transforming adaptation tracking: benchmarking Transformer-based NLP approaches to retrieve adaptation-relevant information from climate policy text**, ACL ClimateNLP 2025, doi:10.18653/v1/2025.climatenlp-1.19

Diffusion of AI across scientific fields



Mind the (data) gap!

Datapoints used to train notable artificial intelligence system Cir World

Each domain has a specific data point unit; for example, for vision it is images, for language it is words, and for games it is timesteps. This means systems can only be compared directly within the same domain.

Data source: Epoch (2024)

OurWorldInData.org/artificial-intelligence | CC BY

Hallucinating anatomy

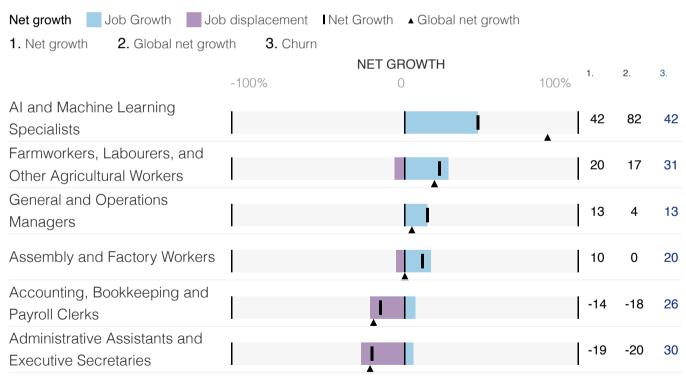
'Very handy hug' image generated by Midjourney v5 [alpha testing]

The Evolving Job Market Landscape

How we conduct research changes

Our jobs change

Demand for new skills across industries


Al talent gap

The Evolving Job Market Landscape

Key roles for business transformation

Roles most selected by organizations surveyed, ordered by net role growth, and their net growth and structural churn (percent)

The Evolving Job Market Landscape

Agriculture Forestry and Fishing

Key barriers for business transformation

Transformation barriers

Share of organisations surveyed expecting the barriers will hinder their organisation transformation

Industry ▲ Global	INDUSTRY	GLOBAL
Skills gaps in the labour market		
	68%	63%
Outdated or inflexible regulatory framework		
	51%	39%
Lack of adequate data and technical infrastructure		
	46%	32%
Inability to attract talent to the industry		
	43%	37%
Organization culture and resistance to change		
	38%	46%

Essential AI Knowledge for Students

- Foundational concepts: AI, machine learning, data, algorithms

- Relevant for all learners

- Critical Thinking and Problem Solving

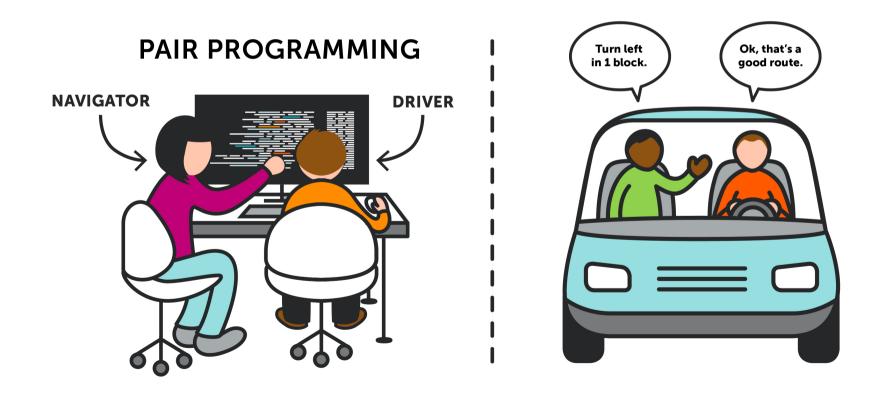
- Problem-solving in AI-infused environments

Image from: http://tiki.oneworld.org/time_machine/images/timemachine.gif

How do we bring AI in the classroom?

How do we bring AI in the classroom?

- Learning by doing


- Practice a lot, slow pace
- Interactive notebooks
- Good infrastructure
- Mix theory with practice
- Understand the principles
- Discussion exercises

We work in teams of two

Share notebooks, data, and documents

Make room for different student profiles

Peer-feedback

Seat on a table with no people from your team

5 people max on each table

Each presents their work and ask for feedback

Tops and tips

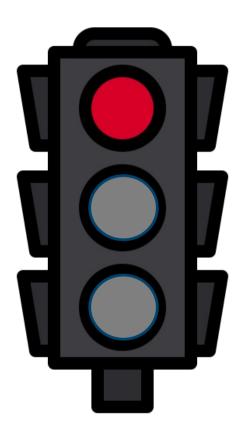
Collaboration, Plagiarism, and the Difference Between the Two

Collaborating

- Collaborating is good.
- You are encouraged to collaborate on ideas and program design.
- Programming is often a social effort, and there is much you can learn by talking out the ideas in this class with each other.
- You can by all means talk to each other, look at each others' programs to help fix problems, and share ideas.

Plagiarism

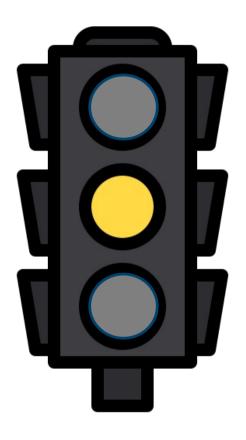
- Plagiarism is bad. DON'T DO IT!
- Any programs that you turn in should be your work.
- Even if you work with someone else and share ideas, you must still write your own program.
- If a piece of your program utilizes someone else's idea, you must make sure to give that person credit in program comments.
- Do not hand a printout of your program to other students. I encourage you to work together to help debug your code, but you should do so sitting together


Collaboration, Plagiarism, and the Difference Between the Two

The following are examples of plagiarism:

- Taking someone else's program, changing comments and variable names, putting your name at the top, and turning it in.
- Finding a similar program on the Internet, changing the variables and comments around, putting your name at the top, and turning it in.
- Finding a similar program in a book, changing the variables and comments around, putting your name at the top, and turning it in.
- Generate a program with AI (i.e. using ChatGPT, co-pilot, and similar GenAI tools), changing the variables and comments around, putting your name at the top, and turning it in.

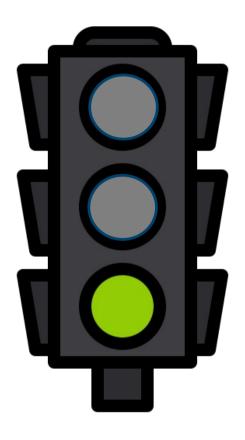
AI Traffic Light


Red - Minimal Allowance

- Students are explicitly forbidden to use generative AI tools in their work.
- Students may use generative Al tools only for brainstorming or ideation, but not for submitted work.

Version 1 2025/2026

AI Traffic Light


Yellow – Restricted Use

- Students may use generative AI tools for assistance (e.g. grammar checking, paraphrasing), but must disclose usage and avoid content generation
- Students may use generative Al as a supplement or companion for writing or creating images with clear attribution, but human authorship must be primary by rewriting Al-generated text and code actively, and editing Al-generated images.

Version 1 2025/2026

AI Traffic Light

Green - Extensive Use

- Students can use generative Al throughout their work, as long as they disclose usage and critically reflect on its contribution.
- Students are actively encouraged to use generative AI tools as part of learning outcomes and skill development with proper attribution.

Version 1 2025/2026

Generative AI for programming in life sciences an e-learning module

Learning goals:

- 1. Understand and explain what genAI is and how it works.
- 2. Recognise and explain ethical and privacy concerns related to genAI use.
- 3. Be able to write functional scripts using genAI (write, test, validate).
- 4. Be able to optimise scripts with genAI.
- 5. Apply strategies for responsible use of genAI in programming/learning how to program.

Generative AI for programming in life sciences an e-learning module

- An example exercise

write a python function to reverse complement DNA and test the code

Here's a Python function to reverse complement a DNA sequence, along with a simple test to ensure it works correctly.

Failed to generate

Here's the Python code directly:

```
python

def reverse_complement(dna_sequence):

"""

Returns the reverse complement of a DNA sequence.

Args:

dna_sequence (str): A string representing a DNA sequence (A, T, C, G).

Returns:

str: The reverse complement of the input DNA sequence.

"""

complement = {
    'A': 'T',
    'T': 'A',
    'C': 'G',
    'G': 'C'
}

# Generate the complement and reverse the sequence
try:
    reverse_complement_sequence = ''.join(complement[base] for base in reverse except KeyError:
    raise ValueError("Invalid DNA sequence: contains characters other than A, ''
```

Running the test:

Save the code in a .py file or execute it in a Python interpreter. It will print "All test cases passed!" if everything works correctly.

4" 0 6 9

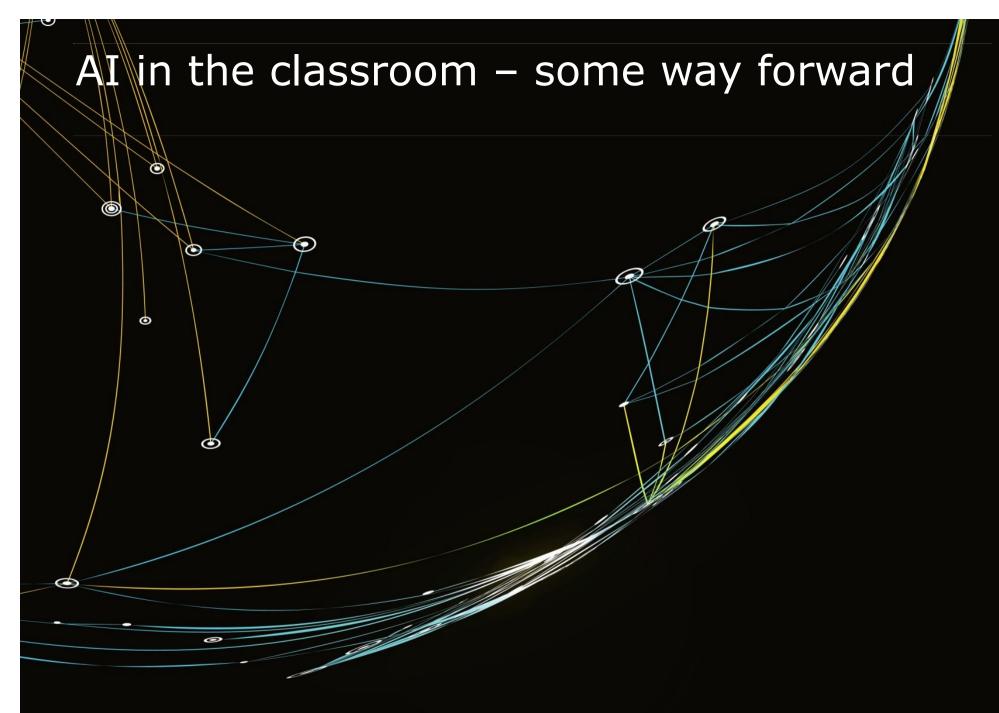
run the test

The test results confirm that the reverse_complement function works as expected for all test cases:

```
1. Input: "ATCG" → Output: "CGAT" → Expected: "CGAT" → Pass
```

3. Input: "AATTCCGG"
$$\rightarrow$$
 Output: "CCGGAATT" \rightarrow Expected: "CCGGAATT" \rightarrow Pass

All tests passed successfully! 🎉 🕞


0 0 0

Threats to scientific software from overreliance on AI code assistants

- Vulnerability to Errors
- Scientific software is at increased risk of undetected errors
- Decline in Code Understanding
- Compromise reproducibility and scientific integrity
- Loss of Scientific Transparency:

Effective Integration Strategies

- Project-based, hands-on learning
- Interdisciplinary collaboration
- Use of AI-driven tools for practice and feedback
- Practice responsible AI use
- Discuss ethical, legal, privacy aspects

Developing an AI-Infused Curriculum

- Align with learning goals and job market needs
- Scaffold progression: introduce concepts early and deepen later
- Infuse AI across subject areas
- Add a course on foundational concepts on AI for research (i.e. AI in Science and Engineering)

All students—not just future programmers—need exposure

Building capacity and infrastructre

- Training and resources for teachers
- Ongoing professional development
- Arrange access to infrastructure
- Ensuring inclusivity for all learners and teachers

Prepare for the future

- AI literacy does not come for "free"
- Lifelong learning is essential
- Encourage adaptability and upskilling
- Role of micro-credentials

Summary

- AI is changing the job market, creating new skill demands
- Foundational AI concepts as machine learning, data, and algorithms are essential for responsible use of AI
- AI-infused education involves project-based, hands-on learning, and interdisciplinary approaches
- Curriculum development should scaffold AI learning from early education through higher levels
- Building educator capacity and access to infrastructure is key to successful AI integration
- Real-world case studies show benefits and methods of AI curriculum integration

Thank you!

Ioannis Athanasiadis

www.wur.ai

